
Bringing generative AI to z/OS
Application Modernization with
IBM watsonx Code Assistant for Z
Wildfire Workshop

November 14, 2024

Barry Silliman
IBM Washington Systems Center
silliman@us.ibm.com

Matt Mondics
IBM Washington Systems Center
matt.mondics@ibm.com

Joel Moss
IBM Washington Systems Center
jmoss@us.ibm.com

Garrett Woodworth
IBM Washington Systems Center
garrett.lee.woodworth@ibm.com

mailto:silliman@us.ibm.com
mailto:matt.mondics@ibm.com
mailto:jmoss@us.ibm.com
mailto:garrett.lee.woodworth@ibm.com

Mainframe application modernization challenges

Agility

With enterprise DevOps,
go from code releases
quarterly (per calendar
year) to quarterly (per
hour)

Skills

Reduce the talent gap
with common tools
and operating models
across platforms

Costs

Leveraging consumption-
based pricing on the
mainframe (Tailored-fit-
pricing) to add new
apps to the mainframe

How

What are the proven
patterns and best
practices for modernizing
mainframe applications?

IBM is accelerating application modernization
with generative AI

Application Discovery / co-creation Patterns OpenTools & Languages

Build the right foundation

Optimize existing applications
Manage the efficiency, cost, and performance of
running current applications.

Enhance and extend applications
Understand, refactor, and transform applications
leveraging an AI-assisted cloud-native experience

Integrate across hybrid cloud
Leverage open APIs and event-driven architecture
to integrate hybrid applications.

Simplify information sharing and data access
Optimize and secure data access and information
sharing across the enterprise.

Increase business agility

Adopt enterprise DevOps and observability
Leverage enterprise DevOps with an integrated CI/CD
pipeline and full application observability.

Make AI-driven decisions at scale
Achieve AI-driven insight at scale to help make
decisions in real time.

Automate and standardize IT
Standardized (AI-assisted) enterprise capabilities to
automate and manage the application and IT life cycle

Accelerate your journey

IBM watsonx Code
Assistant for Red Hat
Ansible Lightspeed

IBM watsonx
Code Assistant
for Z

30%
Reduction in time to complete

coding tasks through the

combination of human & AI

assistants working in

tandem by 2028

80%
Of the product development

lifecycle will make use of

generative AI code

generation by 2025

Source: Gartner, Emerging Tech: Generative AI Code Assistants Are Becoming Essential to Developer Experience,
ID G00790320, May 2023

Generative AI helps address modernization challenges

Mainframe AI assistant for operations

• Quick and accurate answers to questions.

• Execute automation initiated through AI conversation

• Personalize based on job and experience

Mainframe AI assistant for application development

• Supports end-to-end application lifecycle

• Code explanation, optimization, & transformation

• Increased flexibility, interoperability, and quality

Generative AI is transforming the way users experience and interact with IBM Z

© 2024 IBM Corporation 5

IBM watsonx
Assistant for Z

IBM watsonx Code
Assistant for Z

Benefits:
Increase
productivity

Reduce
learning curve

Increase
agility

High quality
outcomes

https://www.ibm.com/products/watsonx-code-assistant-z
https://www.ibm.com/products/watsonx-code-assistant-z

ModelModel

IBM watsonx Code Assistant
Generative AI for Code

Cobol to Java-tuned

Model

Ansible-tuned

Model
<language>-tuned

Model
…

…

Future

AI-assisted mainframe
application modernization

IBM watsonx Code
Assistant for Z

AI-assisted Ansible
content generation

IBM watsonx Code Assistant
for Red Hat Ansible Lightspeed

IBM watsonx Code Assistant
for …

IBM watsonx.ai Granite code models

IBM watsonx Code Assistant
Built for targeted use cases

IBM watsonx Code
Assistant for Z

AI-assisted mainframe
application modernization

Accelerated
application lifecycle

New automated and AI-
assisted capabilities to
support end-to-end
application
modernization lifecycle
with auto discovery,
refactor, and test.

Fine-tuned generative
AI for mainframe code

Leverage the power of
generative AI to make it
easier for developers to
explain applications and
selectively transform them
into well architected, high-
quality Java code.

Incremental approach
provides faster value

Modernize using an
incremental approach that
is faster, lower cost and
less risk and supports full
mixed language
interoperability.

7

Objectives:

• Minimize risk with an
incremental approach to
modernization

• Selectively modernize
based on technical
advantages and business
needs

• Maintain flexibility to
leverage mixed language
and architecture with
complete interoperability

Transformation with a best-fit approach

z/OS

z/OS

IBM watsonx Code Assistant for Z

Db2 IMS DB

VSAM

Baseline

Db2 IMS DB

VSAM

CICS / IMS TM / Batch

CICS / IMS TM / Batch

Extracted services in COBOL
or converted to Java

Original app calls
new extracted
services

Automated
test coverage

Original
application:
Tightly coupled

Or

Incremental
approach provides
faster value

Leverage the power of generative AI to make it easier for developers
to modernize code with AI-generated recommendations

Fine-tuned
generative AI for
mainframe code

Objectives:

• Finely-tuned model
improves understanding,
accuracy, and code
quality

• Well-architected
AI-generated code

• Easy to maintain code
that can be enhanced
with your standards and
best practices

IBM-trained watsonx.ai Granite
Code Large Language Model (LLM)

Tuned for mainframe application use cases
(e.g., Code explanation and transformation)

IBM watsonx Code Assistant
Generative AI services for code

An IDE experience
that starts with

application discovery,
code explanation,
refactoring, and

optimization of COBOL
applications

Accelerate code
development with

an AI-assistant
powered by a

highly-tuned LLM for
Code

Achieve high quality
results faster and apply

your own standards
and best practices

IBM watsonx Code Assistant for Z

AI-assisted mainframe application modernization

Objectives

Accelerated application
lifecycle

AI-generated
high-quality code

Flexibility and rich
interoperability

Benefits

Increased developer
productivity & experience

Greater business agility

Reduced Risk

Expanded talent pool

Generative AI-assisted application lifecycle

The watsonx Code Assistant for Z solution helps modernize
mainframe COBOL applications with capabilities that include
application discovery, code explanation, auto refactoring to
business services, transformation of COBOL code to Java using
generative AI, and auto-generated tests to validate new Java code.

Tailor your journey based on your application
modernization and development needs

On-premises
SaaS in IBM Cloud

SaaS in IBM Cloud

or

On-premises

Base software Add-on capabilities

Understand

Refactor

Optimize

Validate

Transform Transform

or

On-premises (JCL Coming 4Q)

Code Explanation

IBM watsonx Code Assistant for Z deployment models

Code Explanation

Business Value Drivers

12

Large European Bank

2-5x Productivity
Gain
in Code Isolation

Financial Company

66% reduced
effort
for understanding
and refactoring

Global Logistics Company

14-47% reduced
effort for
understanding &
refactoring

60% reduced effort

Code Transformation

Westfield Insurance

2-2.5x developer
productivity gain

• 80% less time for
application understanding

• reduced change
management and
onboarding costs

Read the Case Study

Enhance developer productivity

Increase business agility

Increase operational efficiency

Lower risk

https://www.ibm.com/case-studies/westfieldinsurance

Understand
your application

Code
explanation

Code
refactoring

Code
optimization

Deep analysis to capture

and document program

understanding and relationship.

Creating an application

“blueprint”

Leverage Gen AI to explain code

in natural language that can be

inserted as comments or

downloaded for documentation

Gain agility by decomposing

(refactoring) your application

into more modular business

services

Improve COBOL code by

obtaining insights and

recommendations for

performance improvement

• 2-5X productivity gain in

code isolation

• 80% less time for application

understanding

• Improved developer

onboarding time

• 66% reduced effort for

understanding and refactoring

• Improve COBOL performance

by up to 30%

COBOL Modernization use case
O

u
tc

o
m

e
s

S
te

p
s

1313

Understand
your application

Code
explanation

Code
refactoring

Transform
COBOL to Java

Validate
Java

Deep analysis to capture

and document program

understanding and

relationship. Creating an

application “blueprint”

Leverage Gen AI to explain

code in natural language

that can be inserted as

comments or downloaded

for documentation

Gain agility by

decomposing (refactoring)

your application into more

modular business services

Leverage Gen AI to

transform the refactored

and optimized COBOL code

into object-oriented Java

code

Ensure semantic

equivalence between

refactored COBOL code

and transformed

Java code. Assist Java

developer with leave

behind test asset

• 2-5X productivity gain in

code isolation

• 80% less time for

application

understanding

• Improved developer

onboarding time

• 66% reduced effort for

understanding and

refactoring

• Best fit language – Bring

the tooling

and ecosystem

benefits of enterprise

Java

• Expand mainframe

developer talent pool

• Accelerate unit testing

• Increase code quality

COBOL to Java Transformation use case
O

u
tc

o
m

e
s

S
te

p
s

1414

Understand your JCL jobs Explain your JCL steps

Gain insights and understanding of JCL jobs with graphs to map the

dependencies, datasets, executed procedures, and programs.

• Create Job Flow graphs to easily gain an understanding of dependencies

within the job steps and view the analysis report for a display of all the job

steps.

• Visualize structure of JCL jobs with Job Usage Inventory to understand the

jobs, datasets defined in JCL, procedures, and programs that are executed

in the application.

• Understand relationships between JCL jobs and other components of the

application with Job Call Graph

Generate natural language explanations of JCL steps with watsonx Code

Assistant for Z. These explanations can then be added as comments or

saved as documentation. The user can also choose to add those as

annotations to the Job Flow graph or Dataset Flow graph as appropriate.

Reduce disruption on SMEs time

empowering new team members to accelerate their understanding of JCL

by leveraging graphs to visualize JCL job dependencies and relationships.

Reduce risk of erroneous actions

through better understanding of JCL jobs and its functionality.

Boosting efficiency and productivity for system programmers

as they can quickly understand JCL steps with AI-generated explanations,

reducing the need for manual research and improving task documentation.

Enhance documentation, knowledge sharing and accelerate onboarding

Generated explanations of the selected JCL steps can be added directly to

the code, or saved as other documentation, making them accessible for the

entire team and minimizing the need for repeated consultations.

Modernize JCL
O

u
tc

o
m

e
s

S
te

p
s

1515

Application Discovery is the starting point for z/OS
application modernization

• Deep enterprise application analysis

• Auto discovery of data and program relationships

• Enable incremental refactoring of business services

Visualize and auto-document your COBOL application at the enterprise level

• Start of your application modernization journey with an inventory of applications, resource
usage, and dependencies. Leverage COBOL explanation to improve understanding

• Build business alignment and confirm that your understanding of the application is valid –
ensuring modernization efforts achieve expectations

• Mitigate the challenge of lack of application SMEs with automated analysis & visualized
application flows to enable accelerated application understanding

Inputs

Process Meta data
repository

Application
source code

Batch/online
configuration data

Understand: Begin continuous modernization
of your tightly coupled applications

Discover programs and data needed for a refactored business service within a
large application

• Separate code needed into a refactored service which will be easier to
maintain and reuse

• Automate the service creation process to improve accuracy and reduce time
and skill required for manual developer analysis

• Unlock modernization development agility and ease of integration

Refactor: Automated tooling to identify
services within an application to modernize

New Refactoring Assistant can quickly identify
parts of an application to refactor and extract

into modular, reusable services via deep
functional analysis of the source code.

New automated refactoring capability

Monolithic application

Leverage Generative AI for a natural language explanation of your COBOL code

• Narrow the knowledge gap: Real-time COBOL code explanations aid developers, accelerating
development or modernization efforts

• Free up SMEs: Less reliance on senior experts frees them for advanced work, reducing
knowledge bottlenecks via real-time code explanations

• Streamline documentation: Utilize code explanations to update application knowledge, reducing
manual efforts

• Facilitate modernization strategy: Architects gain deeper insights into COBOL programs, aiding in
identifying optimal modernization approaches

Code explanation: Understand and document
your application faster

Monolithic application Mainframe Application with
Business Services

… …

…

Code Explan
atio

n

Optimize: Optimize your COBOL code with
prioritized performance insights

Save time, money, and resources through early detection and
problem resolution

Reduce skill gap by allowing entry level developers to fix
performance issues independently.

Deliver robust and efficient COBOL applications by quickly
detecting and fixing issues.

Benefits of Performance Insights

Performance analysis and recommendations Conducts
in-depth analysis of COBOL modules through static and
dynamic analysis, providing actionable
recommendations to optimize performance.

Source-code matching
Offers line-to-line analysis for targeted fixes and
enhancements, ensuring precise improvements, all
within your IDE.

m

Top performance problems

Line Problem name Priority

Critical

High

Medium

Low

Ranking and prioritization

Ranks performance issues based

on impact, enabling developers to

focus on high-priority tasks for

maximum efficiency.

Ranking and prioritization
Ranks performance issues based
on impact, enabling developers to focus on
high-priority tasks for maximum efficiency.

AI assistant to generate Java code in minutes, not months

• Generative AI to build data structures and business logic in Java from
your refactored COBOL code

• Well-architected object-oriented Java – not JOBOL

• Maintains IBM Z runtimes and qualities of services with interoperability,
integration, and enterprise standardization

Transform: Leverage generative AI to
accelerate COBOL to Java conversion

IBM watsonx Code Assistant for Z

• State of the art granite.20b.code large language
model with a 32k token context window

• Trained with 1.6T tokens across 115
programming languages

• Tuned for Cobol to Java use case

Streamlined and accelerate testing of new code

• Auto generated testing to compare semantic equivalence of new Java service to, providing
confidence in a successful Java translation and de-risking the process

• Accelerate developer productivity

‒ Enables incremental testing if the Java code is working vs waiting to test broader code path
flows in a later test cycle where it’s harder to determine errors

‒ Tool automation automating tests and enabling them to run in isolation without requiring the
middleware to execute the test

‒ Junit tests generated can be reused and integrated in the DevOps pipeline per standard
practice as the application evolves

Validate: Automated testing capability

Auto-generate
 test cases

C

J

J

C

Validation Scenario: Tests compare COBOL paragraph
and Java method verify equivalence

C J
~~

Automatic mocking enables unit
tests to run on z/OS in isolation

without middleware!

Execute
 test cases

Verify
results

Uses AI to generate the tests using
the same input/output data for both

the COBOL and Java tests

Vision and roadmap

Code generation

Generate an object-oriented Java
equivalent service from an
enterprise COBOL service

Code validation

Generate test cases to validate a
new service & surrounding
application

Code explanation

Generate natural language
explanations of COBOL or JCL

Code optimization

Review a COBOL or Java service
and help make it better

• PL/I support

• Ongoing z/OS subsystem support

2024
Planned Highlights

Vision: Roadmap:

23

Next steps

Briefing & demos

• Overview

• Demo

• Next steps

Solution workshop(s)

• Use case alignment
• Pilot scope
• Define success criteria

Velocity pilot

• Deliver pilot scope
• Prove the value
• Knowledge transfer

Delivery

• Accelerate and scale

• IBM expertise

• Solution delivery

1 Hour 2-8 Hours 2-4 weeks

Show me Initial Project Scale Delivery

Get ready to accelerate your
application modernization journey

Learn more :

• Read the Accelerate Mainframe Application Modernization

with Hybrid Cloud (IBM Redpaper)

• Visit the watsonx Code Assistant for Z webpage

• Request a briefing and demo

• Learn more about IBM Consulting

https://www.redbooks.ibm.com/abstracts/redp5705.html
https://www.redbooks.ibm.com/abstracts/redp5705.html
https://ibm.biz/watsonxcodeassitant
https://ibm.biz/wca4z-demo
https://ibm.biz/ConsultingZAppMod

© 2024 International Business Machines Corporation. No part of this document may be

reproduced or transmitted in any form without written permission from IBM.

U.S. Government Users Restricted Rights — use, duplication or disclosure restricted by GSA ADP

Schedule Contract with IBM.

Information in these presentations (including information relating to products that have not

yet been announced by IBM) has been reviewed for accuracy as of the date of initial publication

and could include unintentional technical or typographical errors. IBM shall have no responsibility

to update this information. This document is distributed “as is” without any warranty, either

express or implied. In no event, shall IBM be liable for any damage arising from the use of this

information, including but not limited to, loss of data, business interruption, loss of profit or loss of

opportunity. IBM products and services are warranted per the terms and conditions of the

agreements under which they are provided.

IBM products are manufactured from new parts or new and used parts.

In some cases, a product may not be new and may have been previously installed. Regardless,

our warranty terms apply.”

Any statements regarding IBM's future direction, intent or product plans are subject to

change or withdrawal without notice.

Performance data contained herein was generally obtained in a controlled,

isolated environments. Customer examples are presented as illustrations of how those customers

have used products and the results they may have.

References in this document to IBM products, programs, or services does not imply that IBM

intends to make such products, programs or services available in all countries in which

IBM operates or does business.

Workshops, sessions and associated materials may have been prepared by independent session

speakers, and do not necessarily reflect the views of IBM. All materials and discussions

are provided for informational purposes only, and are neither intended to, nor shall constitute legal

or other guidance or advice to any individual participant or their specific situation.

It is the customer’s responsibility to insure its own compliance with legal requirements and to

obtain advice of competent legal counsel as to the identification and interpretation of any

relevant laws and regulatory requirements that may affect the customer’s business and any

actions the customer may need to take to comply with such laws. IBM does not provide legal

advice or represent or warrant that its services or products will ensure that the customer follows

any law.

Notices and disclaimers

	Slide 1: Bringing generative AI to z/OS Application Modernization with IBM watsonx Code Assistant for Z Wildfire Workshop November 14, 2024 Barry Silliman IBM Washington Systems Center silliman@us.ibm.com Matt Mondics IBM Washington Systems Center matt
	Slide 2: Mainframe application modernization challenges
	Slide 3: IBM is accelerating application modernization with generative AI
	Slide 4: Generative AI helps address modernization challenges
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: IBM watsonx Code Assistant for Z AI-assisted mainframe application modernization
	Slide 11
	Slide 12: Business Value Drivers
	Slide 13: COBOL Modernization use case
	Slide 14: COBOL to Java Transformation use case
	Slide 15: Modernize JCL
	Slide 16: Understand: Begin continuous modernization of your tightly coupled applications
	Slide 17: Refactor: Automated tooling to identify services within an application to modernize
	Slide 18: Code explanation: Understand and document your application faster
	Slide 19: Optimize: Optimize your COBOL code with prioritized performance insights
	Slide 20: Transform: Leverage generative AI to accelerate COBOL to Java conversion
	Slide 21: Validate: Automated testing capability
	Slide 22: Vision and roadmap
	Slide 23
	Slide 24: Next steps
	Slide 25: Get ready to accelerate your application modernization journey
	Slide 26
	Slide 27

