John Ling ministration of the ministration

MQ SMF Buffer Pool Statistics Part 1

Lyn Elkins – elkinsc@us.ibm.com

© IBM Corporation 2020

What was a state of the state of

Agenda

- The breakdown
- What does private message storage look like?
- What are buffer pools?
- Fields in the buffer pool SMF data
- Interpretation of critical fields

The breakdown

• Buffer pools remain the single largest area of opportunity for tuning

- This presentation is the first in the Buffer pool SMF data series
- Time limitations being what they are under 15 minutes this topic is broken into segments

• The information fields and critical use indicators are covered in this presentation

Private Queue Message Storage

What are the bufferpools?

- Bufferpools are the in-memory storage for private queues
 - More efficient processing than files or databases
 - They are backed up by VSAM linear datasets
 - Used for overflow or long-term message storage
- There can be up to 100
 - Most z/OS queue managers have fewer than 20
- Buffer pools are organized into 4K pages
 - Messages smaller than 4K are on a single page
 - Message larger than 4K get multiple pages, the first page acting as a 'pointer page' to the pages containing the message parts
- The buffer pools remain the biggest area of opportunity for tuning a queue manager.
 - It is all about avoiding I/O
 - Or making the I/O faster!
 - It is the first place to look when there is a slowdown

Buffer pool and Page set relationship

The Buffer Pool SMF information

- There are many fields in the buffer pool data, some are more relevant to tuning the pool than others.
- In this topic I am only going to talk about the bufferpool definition values and the critical counts.
 - QPSTID The ID of the block, x'D70F'
 - · QPSTLL Length of the record
 - QPSTEYEC Eyecatcher, 'QPST'
 - QPSTPOOL Buffer pool number (ranges from 00 99)
 - QPSTNBUF number of 4K pages defined for this pool
 - QPSTCBSL lowest number of 4K pages available during the interval
 - QPSTCBS current number of available buffers
 - QPSTGETP Count of get page (old) requests
 - QPSTGETN Count of get page (new) requests
 - QPSTRIO Read I/O Count
 - QPSTSTW Set Write Intent Count
 - QPSTTPW Count of pages written
 - QPSTWIO Count of DASD Write operations
 - QPSTIMW Synchronous write count
 - QPSTDWT Deferred write threshold met count
 - QPSTDMC Synchronous write threshold met count
 - QPSTSTL Number of buffer steals
 - QPSTSTLA number of hash chain changes during a buffer steal
 - QPSTSOS The number of times the available buffer count is zero
 - · QPSTFLAG Flags indicating location (below or above) and fixed

Sample Buffer pool record

- Very simple sample
 - Note that a single message being written during this test was larger than the buffer pool itself, so it is not a typical situation

}	CSQ4SMFD Sample
Field Name	Value
QPSTID	d70f
QPSTLL	104
QPSTEYEC	QPST
QPSTPOO	5
QPSTNBU	1000
QPSTCBS	49
QPSTCBS	257
QPSTGET	12
QPSTGET	1188
QPSTRIO	2
QPSTSTW	1193
QPSTTPW	455
QPSTWIO	35
QPSTIMW	7
QPSTDWT	5
QPSTDMC	O
QPSTSTL	1190
QPSTSTLA	0
QPSTSOS	0
	Buffer pool located
QPSTFLAG	below bar
	Buffer pool backed by
<u> </u>	pageable 4KB pages

The Informational Fields

QPSTPOOL – the Pool ID

- This is the buffer pool number between 00 and 99
- 00 should be reserved for the queue manager, used for objects

QPSTNBUF – Number of pages

- The number of 4K pages defined for this pool
- All pages are 4K currently

QPSTFLAG – the use flags

- Flags for this pool currently only first 2 bits used
- QPSTLOC
 - 0 buffer pool is below the bar
 - 1 buffer pool is above the bar

QPSTF4KB

- 0 buffer pool is pageable
- 1 buffer pool is fixed in memory (only valid for above the bar pools)

The Informational Fields – continued

QPSTCBSL

- The lowest number of free pages during the interval
- Used when calculating the percentage of free pages

QPSTCBS

• The current number of free pages at the time the SMF record was written

The 'Big Three' Critical Indicators

QPSTSOS

- The number of times the buffer pool went to zero free pages
- Never want to see this

QPSTDMC

- The number of times the synchronous write threshold was hit during the interval
- This is when the pool is at 5% free pages

QPSTDWT

- The number of time the asynchronous write threshold was hit during the interval
- This is when the pool is at 15% free pages
- Note this may not be a problem for batch related workloads

The Critical Indicators – Questions & Responses

- The questions to ponder when any of the counts are non-zero
 - Is this an anomaly?
 - Did something unusual happen (application failure, channel down, etc.)?
 - If it is becoming a habit Time to address the situation
 - Make pool larger?
 - Move it above the bar
 - Move queues to other storage classes new or existing underutilized ones
 - Add getting application instances
 - Make the queue a shared queue to add application instances in other LPARs

Foreshadowing

• In the next in the series, more of the buffer pool SMF fields will be described.